LIDAR Accuracy Assessment Report—Tyrrell County

Tyrrell County, Pasquotank Basin

The preliminary checkpoint spreadsheets were received from NCGS on March 21, 2002. Two spreadsheets were included which compared the independent QA/QC survey checkpoints with the interpolated LIDAR "Z" value as provided by the contractors. The spreadsheet summaries included:

- 1. All the checkpoints with the RMSE calculation for combined land cover
- 2. 95% of the checkpoints with the RMSE calculation (5% of points having the largest error removed)

All data was reviewed and further analyzed to assess the quality of the data. The review process examined the statistics for the combined land cover and the trends for each specific land cover type. The following graphs and figures illustrate the data quality as per the RMSE criteria.

Table 1 summarizes the RMSE using:

- 100% of the checkpoints
- 95% of the checkpoints
- Checkpoints categorized by land cover type

Table 1. RMSE by Land Class						
%	RMSE (cm)	# of Points	Land Class	RMSE Criteria (cm)		
100	20.4	174	All			
95	14.4	165	AII	20		
20	14.9	34	Grass			
19	14.5	33	Weeds/Crop			
16	14.6	27	Scrub			
29	12.9	50	Forest			
12	16.2	21	Built-up			

The LIDAR data for Tyrrell County, Pasquotank Basin <u>meets the specification</u> as per the RMSE criteria of 20 cm.

All figures represent the data with the 95% data set. The data is of good quality.

Figure 1 illustrates the RMSE by specific land cover type.

Figure 1 Figure 2 illustrates the magnitude of the differences between the checkpoints and LIDAR data by specific land cover type and sorted from lowest to highest.

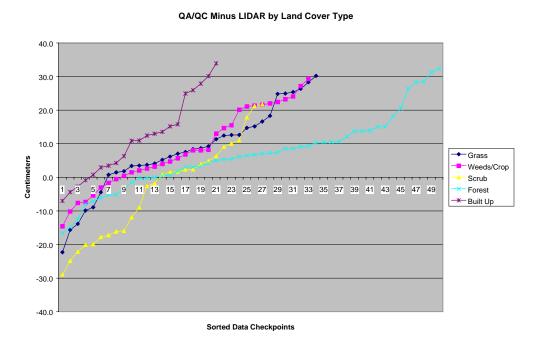


Figure 2

LIDAR Accuracy Assessment Report—Tyrrell County

Table 2 illustrates the Delta between the QA/QC survey checkpoints and that of the interpolated LIDAR.

Table 2. Elevation Delta					
	Land Cover				
-22.3	Grass				
-15.6	Grass				
-13.8	Grass				
-9.9	Grass				
-8.9	Grass				
-4.5	Grass				
0.8	Grass				
1.5	Grass				
1.8	Grass				
3.4	Grass				
3.5	Grass				
3.7	Grass				
4.1	Grass				
5.2	Grass				
6.2	Grass				
7.0	Grass				
7.5	Grass				
8.4	Grass				
8.7	Grass				
9.3	Grass				
11.4	Grass				
12.4	Grass				
12.6	Grass				
12.6	Grass				
14.7	Grass				
15.2	Grass				
16.6	Grass				
18.3	Grass				
24.8	Grass				
24.9	Grass				
25.4	Grass				
26.3	Grass				
28.3	Grass				
30.2	Grass				
-14.6	Weeds/Crop				
-10.2	Weeds/Crop				
-7.6	Weeds/Crop				
-7.3	Weeds/Crop				
-5.4	Weeds/Crop				
-3.0	Weeds/Crop				
-1.7	Weeds/Crop				
-0.5	Weeds/Crop				

0.4	Weeds/Crop				
1.5	Weeds/Crop				
2.1	Weeds/Crop				
2.6	Weeds/Crop				
3.2	Weeds/Crop				
4.0	Weeds/Crop				
4.7	Weeds/Crop				
5.6	Weeds/Crop				
6.8	Weeds/Crop				
8.0	Weeds/Crop				
8.1	Weeds/Crop				
8.2	Weeds/Crop				
13.0	Weeds/Crop				
14.7	Weeds/Crop				
15.5	Weeds/Crop				
20.1	Weeds/Crop				
21.1	Weeds/Crop				
21.3	Weeds/Crop				
21.6	Weeds/Crop				
22.0	Weeds/Crop				
22.4	Weeds/Crop				
23.2	Weeds/Crop				
24.1	Weeds/Crop				
27.2	Weeds/Crop				
29.3	Weeds/Crop				
-28.9	Scrub				
-24.8	Scrub				
-22.1	Scrub				
-20.1	Scrub				
-20.0	Scrub				
-17.8	Scrub				
-17.2	Scrub				
-16.1	Scrub				
-16.0	Scrub				
-11.9	Scrub				
-9.0	Scrub				
-2.6	Scrub				
-1.8	Scrub				
0.9	Scrub				
1.6	Scrub				
1.6	Scrub				
2.3	Scrub				
2.4	Scrub				
3.9	Scrub				

4.9	Scrub
6.3	Scrub
9.1	Scrub
10.0	Scrub
11.1	Scrub
17.9	Scrub
21.3	Scrub
21.7	Scrub
-16.7	Forest
-14.9	Forest
-12.4	Forest
-8.0	Forest
-7.1	Forest
-6.2	Forest
-5.2	Forest
-5.2	Forest
-3.4	Forest
-1.5	Forest
-0.4	Forest
-0.2	Forest
0.0	Forest
0.4	Forest
0.6	Forest
1.8	Forest
3.1	Forest
3.1	Forest
3.4	Forest
4.3	Forest
5.0	Forest
5.2	Forest
5.5	Forest
6.2	Forest
6.5	Forest
6.7	Forest
7.0	Forest
7.3	Forest
7.4	Forest
8.6	Forest
8.6	Forest
9.1	Forest
9.3	Forest
10.3	Forest
10.4	Forest
10.5	Forest

LIDAR Accuracy Assessment Report—Tyrrell County

10.7	Forest		
12.1	Forest		
13.7	Forest		
13.7	Forest		
13.9	Forest		
15.0	Forest		
15.1	Forest		
18.2	Forest		
20.5	Forest		
26.4	Forest		
28.3	Forest		
28.5	Forest		

Forest		
Forest		
Built-up		

10.9	Built-up
12.4	Built-up
13.0	Built-up
13.5	Built-up
15.2	Built-up
15.8	Built-up
24.9	Built-up
25.9	Built-up
27.9	Built-up
30.1	Built-up
33.9	Built-up

Table 3 illustrates the overall statistics for the checkpoint data.

Table 3. Overall Descriptive Statistics								
	RMSE (cm)	Mean (cm)	Median (cm)	Skew (cm)	Std Dev (cm)	# of Points	Min (cm)	Max (cm)
Total	14.4	6.3	6.2	-0.2	13.0	165	-28.9	33.9
Grass	14.9	7.9	7.9	-0.3	12.8	34	-22.3	30.2
Weeds/Crop	14.5	8.5	6.8	0.0	11.9	33	-14.6	29.3
Scrub	14.6	-3.5	0.9	0.0	14.4	27	-28.9	21.7
Forest	12.9	6.8	6.6	0.3	11.1	50	-16.7	32.3
Built Up	16.2	11.3	10.9	0.4	11.9	21	-7.0	33.9

Figure 3 illustrates a histogram of the associated delta errors between the data checkpoints and the interpolated TIN values.

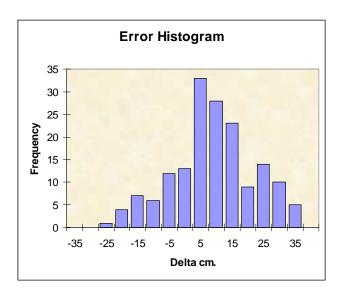


Figure 3