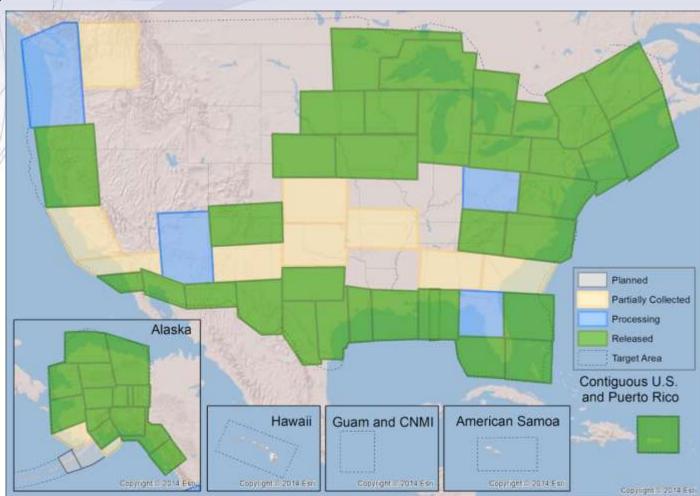

GRAV-D Project Overview


- Overall Target: 2 cm accuracy orthometric heights from GNSS and a geoid model
- GRAV-D Goal: Create gravimetric geoid accurate to 1 cm where possible using airborne gravity data
- **GRAV-D**: Two thrusts of the project
 - Airborne gravity survey of entire country and its holdings
 - Long-term monitoring of geoid change

NOAA's National Geodetic Survey Positioning America for the Future

geodesy.noaa.gov

Gravity for the Redefinition of the American Vertical Datum (GRAV-D)

March 2018

https://www.geodesy.noaa.gov/GRAV-D/

Current North Carolina GRAV-D Survey

Centaur OPA

- Optionally piloted aircraft system based on Diamond DA42MNG
- Aurora Flight Sciences Modified for Multi-role
 - Manned (certified)
 - Unmanned
 - Hybrid
- UAV performance with ability to operate in unrestricted airspace
- Key attributes:
 - One system, multi-roles
 - Safety & reliability
 - Heavy fuel, low burn diesel engines
 - Multi-Payload Ready
 - Low acquisition & life cycle costs

Centaur OPA Specifications

Avionics	Garmin G1000 Glass Cockpit
Airframe	General Aviation Diamond DA-42
Engine	Twin, Austro AE300, Heavy Fuel
Altitude	18k ft manned; 25k ft unmanned
Size	Wingspan: 44 ft, Gross Weight: 4400 lbs
Efficiency	~6-8 gal per hour
Range	2000 nmi
Speed	Loiter: 85kts, Cruise: 135-160kts, Dash: 175 kts
Weather	Anti-icing, non-freezing rain
Runway	Paved or Grass, 2000+ ft
Payload Power	Up to 5.6kW dedicated via separate bus
Other	Low noise, Non-militaristic look

Modes of Operation - Manned

Manned Mode: Fly like any normal manned aircraft with pilot on-board and in control--sensor operator can be on-board aircraft or at ground station

Operational Benefits:

- Fly in unrestricted airspace
 - Use system as any normal aircraft to perform mission/services
 - Put system in operation immediately and then switch to long-duration UAV ops when airspace is approved (Ex: Disasters)
 - Traverse areas (countries) where UAV ops are not permitted to get to a location to perform UAV ops (Ex: Africa, Antarctica)
- Small footprint operations
 - Self-transport system—eliminates need for shipping containers & transport vehicles
- High precision flight controls & navigation

Modes of Operation - Unmanned Unmanned Mode: Fly like any UAV – air vehicle operator and sensor operator control system from the fixed or mobile ground station

Operational Benefits:

- Perform dull or dangerous missions removing crew from harms way
- Extends operational coverage time

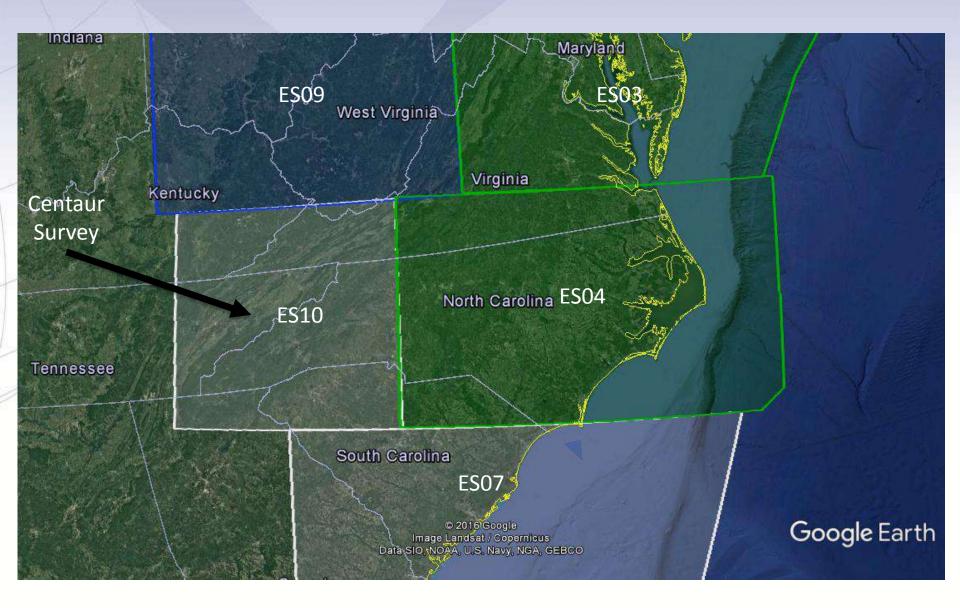
Modes of Operation - Hybrid

Hybrid Mode: Fly like a UAV, but a "hands-off" safety pilot is on-board the aircraft – control of the vehicle is from the ground station

Operational Benefits:

- Allows use of the aircraft in restricted airspace with UAV control
 - Realistic unmanned testing can be performed almost anywhere (Ex: Testing Sense-n-Avoid technologies and airspace integration capabilities)
 - Realistic UAV training can be performed almost anywhere
 - Eliminates need for a COA or the expense of a controlled range location to operate
 - Robot can fly aircraft during dull missions to take stress off pilot (Ex: Large area geo mapping in a "lawn mowing" pattern is extremely dull.)

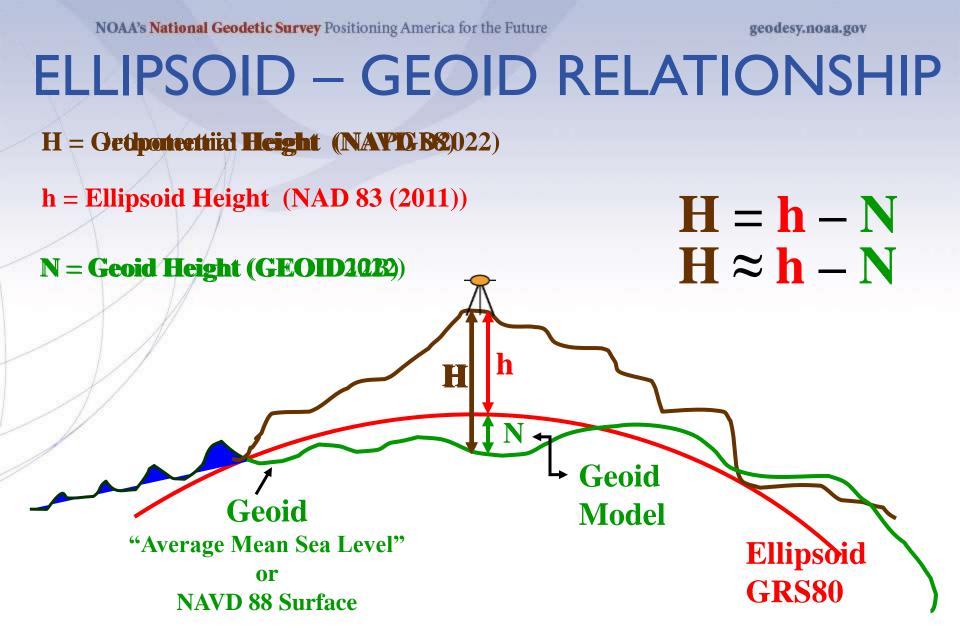
Installation



NOAA's National Geodetic Survey Positioning America for the Future

geodesy.noaa.gov

Relative and Absolute Gravity Meters



Questions?

North Carolina Emergency Management

Gary Thompson, PLS NC Geodetic Survey 4105 Reedy Creek Road Raleigh, NC 27607

Main office: 919-733-3836 Direct line: 919-948-7844

gary.thompson@ncdps.gov

