SPCS2022 in North Carolina

- New State Plane Coordinate System in 2022
 - Will replace SPCS 83
 - Referenced to new terrestrial reference frames
- Two conflicting desires for SPCS2022 coordinates:
 - Change coordinates as little as possible
 - Preserve systems based on SPCS 83 coordinates (sft)
 - E.g., parcel numbering system, FEMA flood mapping tiles
 - Change coordinates by large amount
 - Reduces confusion with SPCS 83 coordinates
 - Satisfies NGS policy on SPCS2022

geodesy.noaa.gov

SPCS2022 characteristics

- Characteristics pertinent to North Carolina:
 - Minimize distortion at ground surface
 - Lambert Conformal Conic: 1-parallel definition
 - Central parallel defined to nearest arc-minute
 - Central parallel scale ≤ 6 decimal places
 - Coordinates must change ≥ 10,000 m (~33,000 ft)
 Grid origins rounded to nearest 1000 m

SPCS2022 policy & procedures

- Policy and procedures still preliminary (draft)
 - Unlikely relevant characteristics will change
 - Would require **exceptions** for something different
 - NGS reluctant to grant exceptions
 - Other states may then also want exceptions
 - Makes overall system definitions more complex
- Possible solution:
 - Satisfy NGS requirements...
 - ...but provide *simple* transformation to SPCS 83
 - Simpler if limit to translation and scale (with no rotation)
 - Accuracy goal is to get within ~1 ft of SPCS 83

Options for SPCS2022 in NC

- 1. Use existing SPCS 83 definition
 - Not really an option...
 - ...but shows shift due to datum change only
- 2. Satisfy all NGS requirements
 - Will show 3 different ways to do this
- 3. Request 1 exception to NGS requirements
 - Grid origin to nearest 1 meter
- 4. Request 2 exceptions to NGS requirements
 - Same as #3 and...
 - ...do *not* minimize distortion at ground surface

1. Use existing SPCS 83 definition

- Shifts due **ONLY** to datum change
- Can use translation alone to reduce coordinate differences with SPCS 83 to within ~0.4 ft
- This option cannot be used but shows smallest possible range in coordinate differences

Statistic	ΔNorth (ft)	∆East (ft)	ΔHorz (ft)
Minimum	2.7	-2.2	3.3
Maximum	3.0	-1.7	3.6
Range	0.3	0.6	0.3
Average	2.8	-1.9	3.4

2. Satisfy all NGS requirements

• Three alternatives:

- 2a and 2b:
 - Intentional very large coordinate shifts
 - Northings not equal to eastings:
 - Northings < 1 million feet most of state
 - Eastings > 2 million feet most of state
- 2c: Coordinate shifts smallest allowable (> 10,000 m)
- 2a: Change central meridian from 79°W to 80°W
 - To balance positive/negative convergence angles
 - But this introduces ~½° rotation for coordinate conversion to SPCS 83
- 2b and 2c: No change of central meridian

2. Satisfy all NGS requirements (cont'd)

- 2a. Move central meridian 1°W and use grid origins that give large coordinate change with N ≠ E in state
- Translation alone reduces max change to ~15,000 ft
- Also requires scale and rotation for max change ~1 ft (and differences may be larger than this)

Statistic	ΔNorth (ft)	ΔEast (ft)	ΔHorz (ft)
Minimum	95,728	1,574,383	1,577,810
Maximum	122,309	1,584,410	1,588,559
Range	26,581	10,027	10,749
Average	110,601	1,578,258	1,582,140

2. Satisfy all NGS requirements (cont'd)

2b. *NO* change in central meridian but use same grid origins as 2a

- Translation alone reduces max change to ~115 ft
- Also requires scale for max change of ~1 ft

Statistic	ΔNorth (ft)	ΔEast (ft)	ΔHorz (ft)
Minimum	110,217	1,280,708	1,285,445
Maximum	110,294	1,280,913	1,285,650
Range	77	205	205
Average	110,264	1,280,822	1,285,560

2. Satisfy all NGS requirements (cont'd)

- **2c.** *NO* change in central meridian and smallest allowable coordinate change (> 10,000 m or ~32,800 ft)
- Translation alone reduces max change to ~115 ft
- Also requires scale for max change of ~1 ft

Statistic	ΔNorth (ft)	ΔEast (ft)	ΔHorz (ft)
Minimum	-1,331	33,991	34,016
Maximum	-1,255	34,196	34,220
Range	77	205	204
Average	-1,284	34,106	34,130

3. One exception to requirements

- Exception: Allow defining grid origins to nearest 1 m (rather than to nearest 1000 m)
- Within ~115 ft of SPC 83 (note difference is same as translation-only modification of options 2b and 2c)
- Requires scale to decrease max change to ~1 ft

Statistic	ΔNorth (ft)	ΔEast (ft)	ΔHorz (ft)
Minimum	-48.4	-112.9	0.4
Maximum	28.2	91.9	113.9
Range	76.6	204.8	113.5
Average	-1.5	1.5	43.8

4. Two exceptions to requirements

Exceptions:

- 1. Allow defining grid origins to nearest 1 m
- 2. No attempt to minimize distortion at ground surface
- Within 2.2 ft of SPC 83 without any modification, but requires exception to important policy on distortion

Statistic	ΔNorth (ft)	∆East (ft)	ΔHorz (ft)
Minimum	-2.2	-0.5	0.0
Maximum	0.3	1.9	2.2
Range	2.4	2.4	2.2
Average	-0.3	0.6	0.8

Distortion performance of options

- For linear distortion at ground surface
 - Options 2 and 3 have less distortion than SPCS 83
 - Option 4 performs about same as SPCS 83 (Option 1)
- This is a significant exception since intent of SPCS2022 is to *minimize distortion at ground surface*
- Percentage of areas within ± 100 ppm distortion (same as 1:10,000 or ± 0.53 ft per mile):

Percentage of:	SPCS 83	Options 2 and 3	Option 4
Area of entire state	44%	76%	44%
All cities and towns	42%	78%	48%
Population	44%	90%	51%

Projection parameters for options

- Same central parallel for all: **35° 15' N** (exact)
- Central parallel same as latitude of grid origin for all
- Central meridian 79°W for all (except 80°W for 2a)
- SPCS 83 parameters not shown (a 2-parallel definition with latitude of grid origin not same as central parallel)

Parameter	2a and 2b	2 c	3	4
False northing (m)	200,000	166,000	166,391	166,394
False easting (m)	1,000,000	620,000	609,605	609,602
Cen parallel scale	0.99995	0.99995	0.99995	0.999873

Summary

- SPCS2022 coordinates in NC will differ from SPCS 83
- Differences < 10,000 m require exceptions to policy:
 - No exceptions: min differences of ~34,000 ft
 - **One minor exception:** differences within ~115 ft
 - One minor + one major exception: differences within ~2 ft
- Best solution may be a compromise:
 - Have no exceptions and use simple transformation
 - Option 2b with simple translation and scale (no rotation) could likely match SPCS 83 to within ~1 ft statewide
- Note that all definitions here are *preliminary*
 - Final definitions may differ, even if one of the options here is selected